
Wizard Scripting Manual Page 1

Wizard
Script

Language
Manual

The Wizard Scripting Engine is Copyright © 1995-2001 by Ledbetter Associates.
All rights reserved.

Manual Written by Keith Ledbetter Last Modified 8-Jul-01

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 2

How the Scripting Engine Works

The Wizard scripting engine is comprised of two separate pieces, although to you they will appear to
be mostly one and the same. Part one is the script compiler, which compiles the English-like instructions
from your scripts into a much more efficient tokenized module. This compilation takes place automatically
whenever you execute a script that (a) has no associated object module or (b) has changed since it was last
compiled. The second piece is the "script execution engine", which is what actually executes your script
commands. The object module, when created, will have the same name as the original script with ".o"
appended to its name (for example, "Drop.Cmd" will be "Drop.Cmd.o". This also allows you to distribute the
compiled scripts that you've written without having to send your source code along with them.

The Wizard's script compiler engine is based on a standard recursive-descent parser algorithm that
is used in many C compilers. This allows very flexible and powerful scripting capabilities with a grammar
that can be easily modified to match the level of the script author. Since the compiler engine is fully
recursive, conditional and loop control statements can be nested indefinitely (or until the memory pool dries
up).

The compiler's parser routine is also very intelligent, giving the script author full control over their
coding style. To illustrate this, look at the following three examples, which all pass the parser's grammar
rules:

 for x = 1 to 10 begin
 echo "Hello there!"
 end

 or:

 for x=1 to 10
 begin
 echo "Hello there!"
 end

 or even:

 for
 x = 1
 to
 10 begin
 echo "Hello there!"
 end

Granted, the last example above takes "script readability" to an all-time low; however, it does illustrate the
"free form" parsing that the script compiler's engine will allow.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 3

The following pages will describe the syntax of the Wizard Scripting language. These terms are used in
defining the scripting language grammar:

variable is a variable name that must begin with an alphabetic

character. Variable names may be up to 32 characters
in length.

constant is a hard-coded value of either a double quoted string

("this is a string") or a simple number (1024).

 Note: if you need to place a double-quote in a constant

string, you must prefix a '\' character to the double-quote.
For example,

 "A string with the word \"quoted\" enclosed in quotes."

 would evaluate to:

 A string with the word "quoted" enclosed in quotes.

value is either a variable or a constant value.

{statement} is used to show either a single statement or a block of

statements. Blocks are started by the keyword "Begin"
and terminated by the keyword "End". You may also use
the C-style shortcuts of '{' and '}' to mark a code block.
In other words, these are identical:

 if (a = b)
 begin
 ..do this..
 ..do that..
 end

 if (a = b)
 {
 .. do this..
 .. do that..
 }

operator denotes one of the following arithmetic operators:

 = (equal to)
 < (less than)
 > (greater than)
 != (not equal to)
 !< (not less than)
 !> (not greater than)
 == a special string operator that checks for a

string within another string. In other words:

 if ("abcdefg" = "cde")

 would evaluate to FALSE, since the two strings do

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 4

 not equal (the single '=' means they must match
exactly)

 if ("abcdefg" == "cde")

 would evaluate to TRUE, since "cde" does occur

in the first string.

 !== Substring not found in string.

condition is one (or more) conditional expressions in the following

format that resolve to either true or false:

 value operator value

 Multiple conditions are separated by the words AND and OR.
 You can also use the C-style shortcuts of && (and) or || (or).

[...] denotes optional parameters.

a | b The vertical bar denotes either/or settings

(i.e.: either a or b)

%variable The script engine supports environment variables that give

you access to much of the data on your character. These
variables are always preceeded by a % sign, and are as
follows:

Name Format Description

%0 string for command line scripts, %0 is the entire command line the user entered.

%1..%9 string for command line scripts, these are the 1st through 9th arguments the user
 specified on the command line.

%leftHand string the contents of your left hand

%rightHand string the contents of your right hand

%weapon string These give you access to your current inventory environment variables.
%shield You set these values manually through the Edit/Settings/Inventory
%container screen. You can also use these values in any keyboard macros that you write.
%sheath

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 5

%directions string This string tells you the directions that are available in the room that you are
currently in. This string will contain a mixture of the letters A - K, which signify
the following available exits:

 A north
 B northEast
 C east
 D southEast
 E south
 F southWest
 G west
 H northWest
 I up
 J down
 K out

 So, if %directions = "CFK", this means there are exits East, SouthWest, and Out.

%health integer Your current hit points.

%fatigue integer Your current fatigue.

%psi integer Your current psi points.

%web integer Your current web points.

%weight integer Your current weight points.

%gold integer Your current gold.

%silver integer Your current silver.

%status string This variable will contain words describing various aspects of your character.

It is implemented as a string variable with spaces in between the various flag
words. This means you should use the format

 if %status == "<word flag>"

 so that the partial string match feature will work.

 The possible words in this variable are as follows:

 Dead Webbed
 Kneeling Invisible
 Sitting Intoxicated
 Lying Immobile
 Standing Unconcious
 Stunned Hidden
 Bleeding Joined
 Calmed Staunched
 Diseased Poisoned

 For example, if your character was currently kneeling down, bleeding, and

following another player, the %status string would be equal to:

 "Kneeling Bleeding Joined"

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 6

Commands by Function Category

Variable Definition:

 String variable [, variable, variable] [;]

 Integer variable [, variable, variable] [;]

Variable Manipulation:

 Set variable = value [+ value + value] [;]

 Add value to variable [;]

 Subtract value from variable [;]

 Multiply variable by value [;]

 Divide variable by value [;]

Displaying Messages to the Game Screen:

 Echo value [+ value + value] [;]

Processing Responses From the User:

 Ask string_variable, value [+ value + value] [;]

Communicating and Processing Responses From the Game:

 Put value [+ value + value] [;]
 Get variable [;]
 Wait [;]
 NextRoom [;]
 WaitFor value [+ value + value] [;]
 Move value [+ value + value] [;]
 Pause value [;]

String Parsing Routines:

 GetWord value, value, string_variable [;]
 GetNumber value, value, integer_variable [;]
 GetWordAfter value, value, string_variable [;]
 GetWordsAfter value, value, string_variable [;]
 GetNumberAfter value, value, string_variable [;]

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 7

 StringToInteger value, variable [;]
 RemovePunctuation string_variable [;]
 SubString string_value, value, value, string_variable [;]

Parameter Manipulation:

 Shift [;]

Conditional Execution:

 If condition {statement}

 Else {statement}

Loop Control:

 For variable = value to value [step value] {statement}

 While condition {statement}

 Do {statement} While condition

 Break

 Continue

Unconditional Movement:

 :LabelName

 goto LabelName

 call SubroutineName

 return

 ExitScript (or just Exit)

Miscellaneous:

 Beep

 Random

 /* ... */ comments a block of lines

 // comments the remainder of a line

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 8

Commands and Their Use

Command: String

Syntax: string variable_name, variable_name2, ...

Use: All variables must be defined before they are used. The string verb allocates a variable

in the global variable table that will be able to hold any string value up to 1024 bytes in
length.

Example:

// define 4 name variables that we'll use later on..
// ---

String firstName, middleName;
String lastName;
String fullName;

Command: Integer

Syntax: integer variable_name, variable_name2, ...

Use: All variables must be defined before they are used. The integer verb allocates a variable

in the global variable table that will be able to hold any numeric value between the values
of -1,247,483,648 to +1,247,483,647.

Example:

// define 2 numeric variables that we'll use later on..
// --

Integer LastReturnCode, LoopCounter;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 9

Command: Set

Syntax: set variable_name = value + value + value;

Use: The set command allows you to change the contents of either a string or a numeric variable

that you have previously defined.

Note: The script compiler will not allow you to mix variable types. In other words, if you have

defined a variable as an integer type, you will get an error message if you try to store a
string value into that variable.

Example:

// do some variable manipulation..
// -------------------------------

String firstName, middleName;
String lastName, fullName;
Integer LastReturnCode, LoopCounter;

Set firstName = "John"
Set middleName = "Fitzgerald"
Set lastName = "Kennedy"
Set fullName = firstName + " " + middleName + " " + lastName;
Set LastReturnCode = 0;
Set LoopCounter = -50;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 10

Command: Add

Syntax: add value to variable_name

Use: The add command is used to perform computations on an integer variable.

Note: The script compiler will not allow you to mix variable types. In other words, if you have

defined a variable as a string type, you will get an error message if you try to add a value
to that variable.

Example:

// An ADD example...
// -----------------

Integer Counter

Set Counter = 0

Add 5 to Counter // counter is now = 5
Add 100 to Counter // counter is now = 105
Add Counter to Counter // counter is now = 210

Command: Subtract

Syntax: subtract value from variable_name

Use: The subtract command is used to perform computations on an integer variable.

Note: The script compiler will not allow you to mix variable types. In other words, if you have

defined a variable as a string type, you will get an error message if you try to subtract a
value from that variable.

Example:

// A SUBTRACT example...
// ---------------------

Integer Counter;

Set Counter = 25000
Subtract 100 from Counter // counter is now = 24900
Subtract Counter from Counter // counter is now = 0

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 11

Command: Multiply

Syntax: multiply variable_name by value

Use: The multiply command is used to perform computations on an integer variable.

Note: The script compiler will not allow you to mix variable types. In other words, if you have

defined a variable as a string type, you will get an error message if you try to multiply
using that variable.

Example:

// A MULTIPLY example...
// ---------------------

Integer Counter

Set Counter = 10
Multiply Counter by 100 // counter now = 1,000
Multiply Counter by Counter // counter now = 1,000,000

Command: Divide

Syntax: divide variable_name by value

Use: The divide command is used to perform computations on an integer variable.

Note: The script compiler will not allow you to mix variable types. In other words, if you have

defined a variable as a string type, you will get an error message if you try to divide
using that variable.

Example:

 // A DIVIDE example...
 // -------------------

 Integer Counter

 Set Counter = 25000
 Divide Counter by 10 // counter now = 2,500
 Divide Counter by Counter // counter now = 1

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 12

Command: Echo

Syntax: echo value [+ value + value...][;]

Use: The echo command is used to print messages from your script to the Game's terminal

window.

Example:

// Using ECHO to display messages..
// --------------------------------

String str;
Integer int;

set str = "Hello there, Wizard scripter!";
set int = 14257;

echo "Str is now <" + str + "> and Int is now <" + int + ">";

// the above will print:
//
// "Str is now <Hello there, Wizard scripter!> and Int is now <14257>"

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 13

Command: If / Else

Syntax: if condition [then] {statement} else {statement}

Use: The If command allows you to take actions based upon whether the condition specified

evaluates to true or false. If statements can be nested to any level.

Note: If you want to perform more than one statement based on a condition, you must enclose

the statements within a Begin/End block!

Note 2: Do not place a ";" terminator after the else statement, since a line only containing a ";" is a

valid "statement" (unless, of course, that's what you really intend to do). See example 2
below.

Example 1:

// if our psi falls below 20, get out!
// -----------------------------------

if (%psi < 20)
{
 echo "Exiting -- psi is low!";
 exitScript;
}
else
{
 echo "Continuing prep spells...";
 ...do whatever...
}

Example 2:

// this IF statement WILL NOT perform as expected,
// because "else;" will parse out to "else <do nothing>".
// --

if (%psi < 20)
{
 echo "Exiting -- psi is low!";
 exitScript;
}
else; // this effectively says "do nothing"
{
 echo "Continuing prep spells..."; // this command block will always
 ...do whatever... // get executed, since it's not tied
} // to the ELSE statement in any way.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 14

Command: For

Syntax: for variable_name = startValue to endValue [step value]

Use: The For command is used to execute a statement or a block of statements for a

predetermined number of times. The variable specified (the "counter" variable) will
be initialized to "startValue" at the beginning of the loop and then incremented by
"stepValue" each time through the loop (or by one if no "stepValue" is specified).

 The looping will continue until the variable is greater than "endValue".

Note: If you want to perform more than one statement with a for loop, you must enclose

the statements within a Begin/End block!

Example 1:

// beep the speaker 6 times to get their attention,
// then put out an error message.
// --

Integer counter

if (error != 0)
{
 for counter = 1 to 3
 {
 beep;
 beep;
 }
 echo "An error of " + error + " occurred!";
 exitScript;
}

Example 2:

// echo all even numbers between 0 and 20
// --------------------------------------

Integer counter

for counter = 0 to 20 step 2
 echo counter

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 15

Command: Do

Syntax: do {statement} while condition

Use: The Do command is used to execute a statement or a block of statements while

the specified condition evaluates to true. Note that this differs from the While statement
in that the {statement} block will always be executed at least one time before the
condition is evaluated. Also note that there is no automatic incrementing of a loop
counter done for you. You must be sure that you do not get into an infinite loop by
writing code that will never satisfy the condition!

Note: if you want to perform more than one statement with a do/while loop, you must enclose

the statements within a Begin/End block!

Example:

// beep the speaker 6 times to get their attention,
// then put out an error message.
// --

Integer counter

if (error != 0)
{
 set counter = 0;
 do
 {
 beep;
 beep;
 add 1 to counter;
 } while (counter < 3)
 echo "An error of " + error + " occurred!";
 exitScript;
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 16

Command: While

Syntax: while condition {statement}

Use: The While command is used to execute a statement or a block of statements while

the specified condition evaluates to true. Note that this differs from the For statement
in that there is no automatic incrementing of a loop counter done for you. You must be
sure that you do not get into an infinite loop by writing code that will never satisfy the
condition!

Note: if you want to perform more than one statement with a while loop, you must enclose

the statements within a Begin/End block!

Example:

// beep the speaker 6 times to get their attention,
// then put out an error message.
// --

Integer counter

if (error != 0)
{
 set counter = 0;
 while (counter < 3)
 {
 beep;
 beep;
 add 1 to counter;
 }
 echo "An error of " + error + " occurred!";
 exitScript;
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 17

Command: Break

Syntax: break

Use: The Break command is used to break out of a for or a while loop. Execution will

continue at the statement immediately after the scope of the current loop.

Example:

// Tell the FOR loop to beep the speaker 1000 times,
// but really only do it 5 times (don't ask me why..)
// --

Integer counter

if (error != 0)
{
 for counter = 1 to 1000
 {

beep;
 if (counter > 5)
 break;
 }
 Echo "We'll come right here after the BREAK statement";
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 18

Command: Continue

Syntax: continue

Use: The Continue command is used to immediately return to the top of a for or while loop,

thereby bypassing any code after the continue statement. Execution will continue at
the "condition" check at the top of the loop.

Example:

// Beep the speaker 10 times, but NOT if it's
// the fifth or eighth time through the loop.
// --

Integer counter

for counter = 1 to 10
{
 if (counter = 5 or counter = 8)
 continue;
 beep;
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 19

Command: Goto

Syntax: goto label_Name

Use: The Goto command is used to immediately pass execution to the statement following

the specified label. A label must contain a colon in the first position of its name.

Note: Doing a GOTO command from within any nested block statement will be handled correctly.

Example:

// Goto examples..
// ---------------

if (lastError = -43)
 goto FileNotFound;
else if (lastError = -120)
 goto FolderNotFound;

... more code...

:FileNotFound
 echo "Source file doesn't exist!"
 ExitScript

:FolderNotFound
 echo "Source folder doesn't exist!"
 ExitScript

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 20

Command: Call

Syntax: call subroutine_Name

Use: The Call command is used to transfer execution to the subroutine named by the

specified label. After the subroutine exits, execution will continue at the statement
following the CALL command.

Example:

// Call examples
// --------------

if (%1 = "") // did they specify a parameter?
{
 call GetParameters; // nope, call a subroutine to get them.
 echo "Back from call"; // we'll return right here
}

...more code...

exitScript; // you MUST have an exitScript before any
 // subroutine definitions, or you'll "fall

// thru" to them..not what we really want

subroutine GetParameters // subroutines MUST be enclosed in Begin/End
{ // (or the 'C' shortcut of {})
 echo "";
 echo "Getting parameters from the user...";
 call GetInputStuff; // calls can be nested, too
}

subroutine GetInputStuff
{
 Ask (tString, "Enter command line parameters");
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 21

Command: Return

Syntax: return

Use: The Return command can be used at any time to exit the current subroutine.

Normally, subroutines exit when their ending END (or }) is encountered.

Example:

call doSomething;

...more code...

// ask them for their name. If they cancel it,
// return immediately without saying anything.
// --

subroutine doSomething;
{
 Ask (tString, "Enter your name");
 if (tString = "")
 return;
 echo "Hello there, " + tString;
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 22

Command: ExitScript (alias Exit)

Syntax: ExitScript

Use: The ExitScript command is used to halt the script processing immediately.

Example:

// if an error occurred, stop execution
// ------------------------------------

if (error != 0) begin
 echo "Error " + error + " occurred..aborting!";
 ExitScript;
End;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 23

Command: Beep

Syntax: Beep

Use: The Beep command will beep the speaker one time. This can be used to get the

attention of the user.

Example:

// if an error occurred, beep and put
// out an error message
// ----------------------------------

if (error != 0) begin
 for count = 1 to 3
 beep;
 echo "Error " + error + " occurred..aborting!";
 ExitScript;
End;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 24

Command: Trace

Syntax: Trace "on" | "off"

Use: The Trace command is a script debugging tool that can be used to force each line

to be displayed to the Game Window terminal screen as it is executed. By default,
trace always starts out in the "off" mode. You can use multiple trace statements to

 toggle the state on and off.

Note: Not yet implemented.

Example:

// Turn on tracing..
// -----------------

Trace on

...some new code...
...some new code...

Trace off

...some code...
...some code...

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 25

Command: Put

Syntax: put value [+ value + value...]

Use: The Put command is used to send a command to the game.

Example:

// Get our weapon and shield ready to go
// -------------------------------------

put "get my " + %weapon + " from my " + %container;

put "remove my " + %shield;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 26

Command: Ask

Syntax: ask string_variable, variable

Use: The Ask command prompts the user with a dialog box and stores what the user

typed in to the specified string variable. If the user cancels the dialog box, the
resulting string variable will be empty (ie: "").

Example:

// If the user didn't specify a command
// line parameter, prompt them for it.
// ------------------------------------

string whatToSell;

set whatToSell = %1; // from the command line

if (whatToSell = "") // did they specify it?
{
 Ask (whatToSell, "Sell what?");
 if (whatToSell = "")
 {

exitScript; // they must've changed their mind
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 27

Command: Get

Syntax: get string_variable

Use: The Get command reads the next line output by the game (that is, the information

that comes across the modem). This is the command that you'll use to check on
responses from your commands.

Example:

// Find out how much money we've got in our
// pockets, and deposit it all at one shot.
// --

string input, money;

put "wealth";

while (1 = 1)
{
 get input;

 if (input == "you have no") // we're broke!
 break; // exit the WHILE loop
 else if (input == "you have")
 {
 GetNumberAfter (input, "you have", money);
 put "deposit " + money;
 break; // exit the WHILE loop
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 28

Command: Wait

Syntax: wait

Use: The Wait command pauses the script until the next command prompt is detected.

This command is rarely needed.

Example:

// Put out a command, and wait for a prompt.
// ---

put "sit";

wait;

echo "Got a prompt!";

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 29

Command: NextRoom

Syntax: nextroom

Use: The NextRoom command pauses the script execution until a new room description

is detected. This is used after "walking" commands to pause until you've completed
the movement.

Example:

// Walk around a bit
// -----------------

put "n";
nextRoom;
put "e";
nextRoom;
put "go bridge";
nextRoom;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 30

Command: Move

Syntax: move variable

Use: The Move command does the equivalent of a PUT and a NEXTROOM command.

The above example (NextRoom) could be significantly shorter by using the MOVE
command instead, as in:

Example:

// Walk around a bit
// -----------------

move "n";
move "e";
move “go bridge";

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 31

Command: WaitFor

Syntax: waitfor value + value + value...

Use: The WaitFor command is a shortcut command that pauses the script until the specified

string is detected coming from the game. This is much less powerful than parsing the
input yourself with the get command, but it's here mostly to maintain backward compatibility
with earlier Wizard scripts.

Example:

// Walk around a bit
// -----------------

put "n";

waitfor "You move";

echo “Got the string \”You move\””;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 32

Command: Pause

Syntax: PAUSE value

Use: The Pause command pauses the script for the specified number of seconds.

Note: You don't have to worry about "round time" pausing in your scripts. The Wizard script

engine will never execute a command while the roundtime counter is greater than 0;
it will enter a "pause" state automatically until the roundtime counter goes back to zero.

Example:

// Stand up and equip ourselves
// ----------------------------

put "stand";

pause 10;

... more code ...

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 33

Command: GetWord

Syntax: getWord string_value, integer_value, string_variable

Use: The GetWord command is used to pick words out of a string variable,
 and is very valuable for parsing data that comes back from the game.
 The first parameter is the string to parse, the second parameter is
 the number of the word you want to get, and the third parameter is
 the name of the string variable where you want the result placed. If
 you ask for a word number that doesn't exist in the string, the result
 will be an empty string ("").

Examples:

string testString;
string theWord;

set testString = "DGate rules the world!"

GetWord (testString, 1, theWord);

// theWord now equals "DGate"

GetWord (testString, 3, theWord);

// theWord now equals "the"

GetWord (testString, 20, theWord);

// theWord now equals ""

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 34

Command: GetNumber

Syntax: getNumber string_value, integer_value, integer_variable

Use: The GetNumber command is identical to the GetWord command, except that

it stores the numeric result into an integer variable. If you ask for a word number
that doesn't exist in the string, the result will be zero.

Example:

string testString;
integer theNumber;

set testString = "DGate rules the world 100% of the time!"

GetNumber (testString, 5, theNumber);

// theNumber now equals 100

GetNumber (testString, 20, theNumber);

// theWord now equals 0 (word doesn't exist)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 35

Command: GetWordAfter

Syntax: getWordAfter string_value, string_value, string_variable

Use: The GetWordAfter command will find the specified string in the source string and then

extract out the next word from the string, placing it in the variable you specified. The
first parameter is the string to parse, the second parameter is the search string, and the
third parameter is the name of the string variable where you want the result placed. If
you ask for a word following a substring that isn't found, the result will be an empty
string ("").

Example:

string testString;
string theWord;

set testString = "DGate rules the world!"

GetWordAfter (testString, "rules", theWord);

// theWord now equals "the"

GetWordAfter (testString, "DGate", theWord);

// theWord now equals "rules"

GetWordAfter (testString, "abcd", theWord);

// theWord now equals ""

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 36

Command: GetWordsAfter

Syntax: getWordsAfter string_value, string_value, string_variable

Use: The GetWordsAfter command will find the specified string in the source string and then

copy the remainder of the string to the variable specified. The first parameter is the
string to parse, the second parameter is the search string, and the third parameter is the
name of the string variable where you want the result placed. If you specify a substring
that isn't found, the result will be an empty string ("").

Example:

string testString;
string theWords;

set testString = "DGate rules the world!"

GetWordsAfter (testString, "rules", theWords);

// theWords now equals " the world!"

GetWordsAfter (testString, "abcd", theWords);

// theWords now equals ""

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 37

Command: GetNumberAfter

Syntax: getNumberAfter string_value, string_value, integer_variable

Use: The GetNumberAfter command performs the same processing as the GetWordAfter

routine, with one small (but important) difference. It will parse the resulting word into a
numeric string, stripping out any extraneous information. It will then store that numeric

 value into an integer variable. This is very valuable when the word you want to get at
contains dollar signs or commas.

Examples:

string testString;
string theWord;
integer theNumber;

set testString = "Your current balance is $5,275 gold coins."

GetWordAfter (testString, "balance is", theWord);

// theWord now equals "$5,275"

GetNumberAfter (testString, "balance is", theNumber);

// theNumber now equals 5275

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 38

Command: SubString

Syntax: SubString string_value, integer_value, integer_value, string_variable

Use: The SubString command is used to copy part of a string into another string variable.

The first parameter is the source string, the second parameter is the start position,
the third parameter is the end position, and the fourth parameter is the name of the
string variable where you want the result placed.

Example:

string bigString;
string oneCharacter;
integer x;

set bigString = "This is a very long string for testing”;

echo “The first 10 characters are as follows:”;

for x = 1 to 10
{
 SubString (bigString, x, x, oneCharacter);
 Echo “bigString [“ + x + “] = <” + oneCharacter + “>”;
}

Example 2:

String cardFace, cardSuit;
String oneCard, oneSuit;

Set cardFace = “234567890JQKA234567890JQKA234567890JQKA234567890JQKA”;
Set cardSuit = “CCCCCCCCCCCCCHHHHHHHHHHHHHDDDDDDDDDDDDDSSSSSSSSSSSSS”;

// display the 23rd card in the deck
// ---------------------------------

SubString (cardFace, 23, 23, oneCard);
SubString (cardSuit, 23, 23, oneSuit);

If (oneSuit = “D”)
 Set OneSuit = “Diamonds”;
Else if (oneSuit = “S”)
 Set OneSuit = “Spades”;
Else if (oneSuit = “H”)
 Set OneSuit = “Hearts”;
Else
 Set OneSuit = “Clubs”;

Echo “The 23rd card in the deck is the “ + oneCard + “ of “ + oneSuit;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 39

Command: StringToInteger

Syntax: StringToInteger string_value, integer_variable

Use: The StringToInteger command converts a string value into a numeric value and stores the

result into the specified integer variable.

Examples:

string testString;
integer x;

set testString = "421234";
set x = 0;

echo "testString is now <" + testString + ">"
echo "x is now <" + x + ">"

StringToInteger (testString, x);

echo "testString is now <" + testString + ">"
echo "x is now <" + x + ">"

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 40

Command: RemovePunctuation

Syntax: RemovePunctuation string_variable

Use: The RemovePunctuation command removes all punctuation from the specified string

variable. This command comes in very handy when you need to parse words out of a
string returned from the game.

Example:

string test;

set test = "Wizard says, \"if you want, you can follow me!\"";

// test now contains : Wizard says, "if you want, you can follow me!"
// --

echo "Before removing punctuation, test is <" + test + ">"

RemovePunctuation (test);

// test now contains : Wizard says if you want you can follow me
// ---

echo "After removing punctuation, test is <" + test + ">"

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 41

Command: Shift

Syntax: shift

Use: The Shift command moves the command line parameters of a command script down one

(that is, %2 becomes %1, etc). This is very handy for looping through all parameters
that the user specified on the command line.

Example:

// This command line script will display all of the
// words that the user entered on the command line.
// ---

while (%1 > "") // while more parameters
{
 echo "Next parameter is <" + %1 + ">";
 shift;
}
echo "All done!";

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Wizard Scripting Manual Page 42

Command: Random

Syntax: random (integer_variable, integer_value)

Use: The Random command generates a random number between the values of

1 and "integer_value" and stores it in the integer variable specified.

Example:

// Grab our weapon from our sheath, and do an act command
// 10% of the time saying we cut our finger on it.
// --

integer pct;

put "get my " + %weapon + " from my " + %sheath;

random (pct, 100);

if (pct < 11)
{
 put "act grimaces as he fumbles with his " +
 %weapon +

 ", cutting his finger.";
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

